
Navigation among People with CORTEX

Pablo Bustos, Luis J. Manso, Pilar Bachiller, and Pedro Núñez

RoboLab, Escuela Politécnica, Universidad de Extremadura
Cáceres, Spain

http://robolab.unex.es

Abstract. Robot navigation is one of fist functionalities that attracted
the attention of roboticists and nowadays there problem is considered
a mature discipline in many aspects. However, when considered as part
of a cognitive architecture and when the usual boundary conditions are
removed, navigation becomes again a hard problem that needs to be
approached as a gear forming part of a bigger system. In this paper
we discuss a navigation sub-architecture designed to be a part of a the
robotics cognitive architecture CORTEX, and how it can be evolved
from classical navigation tasks to the more challenging social navigation
scenarios required in social robots.

Keywords: Robotics, Social Robots, Cognitive Architectures, Social
Navigation

1 Introduction

Cognitive architectures have been studied as a part of research in Artificial In-
telligence since the 1950s with the ultimate goal of achieving human level intel-
ligence. Cognitive architectures for robotics additionally address the existence
of a physical robot that has to evolve in the real world. However and as stated
in the extensive review of Kotseruba et al [1], there is not a clear definition of
general intelligence, neither a comprehensive set of competencies and behaviours
required for intelligence that can be used to compare the many architectures cur-
rently under development. To approach the problem of cognitive robotics, some
authors have extended existing cognitives architectures created to study human
intelligence with specific perception-action modules. ADAPT adds declarative
memory and a schema language to Soar, ACT-R/E ads manipulative, spatial
reasoning and navigation modules to ACT-R and SS-RICS adds subsymbolic
modules to ACT-R providing perception and action algorithms [2]. Architec-
tures specifically designed for robotics give much more weight to perceptive and
action components, seeking creative ways to combine task level planning with
the effective execution of complex behaviours in real-world environments [3] [4]
[5] [6].

In this paper we are interested on architectures designed to create flexible be-
haviours in autonomous robots, specifically in robots that interact with humans.
These architectures have to encompass several critical features such as real-time

2 Navigation among People with Cortex

operation, interleaving of reactive and deliberative operations, complex percep-
tive functionalities to understand the dynamic world where the robot operates
and large software codebases difficult to manage. To face these challenges, a
modular organization is usually adopted making extensive use of distributed
computing technology in the form of robotics software development frameworks.
These software elements become the building bricks of modern robotics cogni-
tive architectures. Although the goal of these architectures is to be of general
application, when applied to real robots in real scenarios some choices have to
be made. Usually, the type of scenarios, the physical configuration of the robot
and the type of missions to be tackled constrain the set of competences that
will be part of the architecture. Sets of generic competences proposed by several
authors include perception, learning, reasoning, decision making, planning and
acting [7], although it is infrequent to see all of them working together. In prac-
tice, more specific functionalities are defined and implemented to support these
competences, such as object and human perception, manipulation and grasping,
navigation, localization and mapping, under additional constraints imposed by
current software and hardware technology.

We are interested on how these architectures can be extended to make ex-
isting functionalities operate in more complex situations. This feature might a
be a good indicator of the potential of an architecture to succeed in achieving
robot missions, since most of them are initially designed with a set of neces-
sary constraints that are intended to be removed with time. In this specific case
we focus on the navigation competence, mandatory in most RCAs. We anal-
yse the problem of extending classical navigation among inanimate obstacles to
socially-assitive navigation, where humans enter the scene and new social rules
have to be applied. We proceed with a brief introduction to CORTEX and how
its navigation agent is modified to account for social navigation requirements.

2 CORTEX

CORTEX is a robotics cognitive architecture organized as a set of cooperating
agents that communicate through a shared representation1. Agents have been
created to provide intelligent behaviour in social robotics scenarios, such adver-
tisement [9], psychiatric evaluation [10] or autonomy enhancement [6] and, thus,
to cover competences such as navigation, localization, manipulation, dialoguing,
object and human perception, task planning and some sorts of learning. Being
a cognitive architecture, CORTEX has a planning and executing agent with ac-
cess to the domain knowledge of these scenarios. This knowledge is compiled
as a collection of typed objects and logical predicates related by transformation
-if-then- rules 2. The shared representation used by agents to communicate is a

1 The concept of agent is taken here as a generic software module that implements
some functionality of the architecture. These agents can be rational as in [8], reactive
or both, but they keep a predefined structure specified by the architecture.

2 Although CORTEX provides a graphical editor that facilitates the management of
this knowledge, it can be automatically translated to PDDL [11]

Navigation among people 3

working memory that holds an updated state of the world around the robot and
of itself. It is not size limited as in biological inspired models and is structured
as a graph named Deep State Representation (DSR). The DSR itself is main-
tained by an special agent, DSRa, that provides very efficient concurrent access
and publish/subscribe services to the other agents using the robotics framework
RoboComp3 [12]. The most salient features that define DSR are:

– Nodes represent objects and edges are predicates relating nodes.
– Objects can have a list of attributes.
– Nodes have types that are defined in a hierarchy of is-a relationships. This

types capture semantic knowledge about things in the world.
– Predicates have also predefined types that refer to arbitrary relations among

objects such as above, inside, part-of or touching.
– Node’s attributes can be symbolic or numerical. Numerical attributes can

represent kinematic relations between nodes allowing for a complete kine-
matic tree embedding inside the graph. Also, meshes with the geometry of
robot’s parts or worlds objects can be stored, similarly to the scene-graph
of 3D graphic engines. This feature makes DSR a hybrid representation that
can be used by the agents to reason about it, solve problems, update it with
changes in the world or predict the outcome of actions.

Agents communicate through this graph representation although they can
keep a local copy of all or part of it. Changes made by the agents to the DSR
can be structural, when nodes or edges are inserted or deleted, or non-structural,
when only the attributes of a node are changed. In both cases, all agents receive
a notification of the change by a subscription mechanism. When an agent wants
to change a node’s attribute or add or delete a group of nodes, it sends the
proposed change to the DSR agent. This agent, prior to modifying the graph,
might check that the final state graph is reachable by application of the domain
rules4.

See [13][14][15][6][10] for a more detailed description of CORTEX and its
application to various robots in different scenarios.

With this architecture we want to combine in an efficient way two confronted
concepts that come up inevitably in the design of any intelligent system:

– Distribution, is an architectural feature needed to cope with the complex-
ity of the software that makes up the robot’s control system and artificial
intelligence. Current social robots executing human commanded missions
in research facilities might deploy between 20 and 60 coarse grain software
components distributed among a local cluster of connected computers. Each

3 RoboComp is open source and maintained by a community of developers at
http://robocomp.org

4 This function is specially interesting if agents have the freedom to insert new sub-
graphs in the DSR. It can be the case that the resulting graph cannot be reached by
application of the transformation rules in the domain knowledge. If that situation is
accepted, the planner might not be able to solve certain missions.

4 Navigation among People with Cortex

component itself is usually designed as a set of partially decoupled concur-
rent threads. Engineering needs decoupling to build large complex systems
and, in this context, decoupling is implemented as large scale software dis-
tributed systems. Each functionality that is isolated from original problem
creates a potential need for communication with the remaining parts.

– Context sharing, is a situation that appears in distributed systems composed
of several decoupled components that, at some point, require data from other
components to make better informed decisions. Cognitive systems rely on
declarative knowledge, i.e. there is a person nearby, that is created, updated
and used in many parts of the system. In general terms, the finer the grain
in a distributed architecture, the more difficult is to access the information
created by other participants.

Fig. 1: Scheme of the CORTEX architecture showing a set of agents interact-
ing with a central, shared representation. Nodes represent object in the world
(and the robot) and edges represent predicates or relationships among nodes.
The result is a hybrid symbolic/numerical representation that can hold data at
different levels of abstraction, from sensor reading to high-level symbols.

The approach followed in CORTEX is an attempt to facilitate the creation of
large distributed software for robots that concurrently perceives, plans and acts

Navigation among people 5

to take a representational state to a target configuration as defined by a given
command. CORTEX global functioning is driven by two forces, a) the creation
and maintenance of a coherent representation of the environment and of the
robot itself, and b) the transformation of the current represented state into a
goal state.

3 Navigation as global-local interactions

The Navigation agent in CORTEX has been in steady evolution for the last few
years. It was originally designed to tackle the problem of how to accommodate
the local interactions of the robot’s path-following controller, with the global
inputs provided by the path planner. During typical displacements it is common
that a stuck local controller calls for a replanning action, so the path changes
and has to be adapted using real time range measurements. This continuous
interaction between a fast, real-time, reactive, bottom-up behaviour like the local
controller, and a slower, deliberative, top-down reasoning process is paradigmatic
in robotics, and occurs in very different domains, time scales and abstraction
levels.

From an architectural point of view, these local-global interactions have been
approached commonly as function calls among software components running
specialized algorithms. In the approach presented here, interactions are handled
through a shared structure that represents the current path followed by the
robot. This idea was initially inspired by the elastic bands concept presented
in [16], subsequently extended in [17][18] and applied in real world scenarios
[19][19][20], where the path was represented as an elastic, deformable string
exposed to physical forces computed from the range measures of the robot’s
sensors.

We have extended this idea in several ways and built a navigation sub-system
whose structure is self-similar to the overall CORTEX’s organization. An initial
version was presented in [21]. In our agent, several components interact over a
shared representation of the path, creating a particular dynamics that leads the
robot to its goal. Components read and modify the path in several ways, reacting
to changes introduced by others. This organization has, in our opinion, several
interesting advantages:

– The loose coupling among components facilitates the addition of new inter-
actions that modify the robot’s behaviour.

– The explicit existence of the virtual path simplifies the interpretation and
debugging of the whole system.

– The overall behaviour is better understood as a dynamical system driven by
several identifiable forces.

Initially, or when there is no goal assigned to the agent, the virtual path
does not exist and, consequently, the components are in an idle state. When a
target arrives to the agent, the path planner creates a new feasible path using,
whether the local context, i.e. exits a clear straight path to the goal, or the

6 Navigation among People with Cortex

geometric model of the environment that is part of the DSR. Once an initial
path is created, the other two components activate. Projector will transform
the real-time laser measurements into a force field that brings the initial mental
construction to the reality. In parallel, Path Follower will drive the robot along
the path, deleting the part travelled as it advances. Eventually, the path will be
completely removed, the robot will be correctly positioned at its destination and
all three components will return to a rest.

The three components that access and modify the path are described in the
next subsections.

3.1 The path

The path is constructed as a software object with a well defined interface. The
core data structure of the path is a list of inflatable 2D points or bubbles that
behave as an elastic band under various internal and external forces and pro-
cesses. The path is defined as the ordered set, P = pi : p ∈ R2xN, i ∈ 0..N , with
two real coordinates in a global refererence system maintained by the robot, and
an integer one for the bubble’s radius. Each radius is computed as the minimum
distance to the surrounding objects in the environment, using some robot’s mea-
surement device. The function ρ(p) that computes this radius is defined as R2

× R2 →
{
R+ ∪ 0

}
and is implemented as a search iterating over the laser array

and the list of visible points.

The set of forces and processes that affect the path are:

– The Path Planner creates a new path given the robot’s position and a target,
based on the internal representation of space, DSR, that is maintained by the
collection of agents. The creation of the path initiates the internal dynamics
that will eventually take the robot to the target.

– The first internal force, fs models the tension in a physical elastic band. It
preserves the virtual band from excessive bending, stretching it out if left
alone. The force can be computed from nearby points as,

fs = ks(
pi−1 − pi
‖pi+1 − pi‖

− pi+1 − pi
‖pi+1 − pi‖

) (1)

– The main external force is created by interaction of the path with the Pro-
jection component and is described with more detail in Subsection 3.3. This
force pushes the band away from nearby obstacles and interact with the pre-
vious one creating a dynamic response of the band to the environment, that
tends to maintain a smooth, safe path among the obstacles in the world.

– There are two cleaning processes that maintain a maximum and a minimum
distance between the points in the band. To do that they create or remove
exiting points when two simple distance thresholds are exceeded. See Figure
2 for an example.

– There is also a process that removes the points of the path that have been
already traversed by the robot. This action causes the path to eventually
disappear signalling the successful conclusion of the navigation task.

Navigation among people 7

3.2 Path Planner

The Path Planner activates either because a new command has arrived from
the task planner, or because the robot is stalled in the path. In both situations,
the Planner will search for a safe path in the DSR representation of the space.
The planning functionality is provided by a combination of two classical path
planners, PRM [22] and RRT [23]. A PRM is used initially to create and main-
tain a local, fast access, graph of the free space from the existing model of the
environment as represented in the DSR. Most paths are computed on this graph
using standard minimum cost algorithms, but when the target is not reachable
from the graph because there is not a direct line of sight, an RRT-Connect plan-
ner [24] used to search for a safe path. This new path is afterwards added to
graph so the next time a similar situation appears, the target will be reachable.
See Algorithm 1. This component improves its performance with time since iso-
lated components that might remain in the graph after creation are progressively
eliminated through additional, low-priority sampling, and the addition of paths
covered by successful missions. With time, path planning is replaced by what
could be seen as a very efficient memory recall of past experiences. Notice that
if the robot is translated to a new room and given a rough map, grid or objecti-
fied, of the occupied space, it will quickly build its own graph of free space and
improve it over time.

Result: path
while True do

if new-target then
r = robot-position() ;
t = target-position() ;
pi = r ;
pr = closest-point-in-free-space-graph(r) ;
if not atSight(pr) then

pi += RRT-plan(r, pr) ;
update-PRM-with-new-samples(pi) ;

end
pt = closest-point-in-free-space-graph(t) ;
if not atSight(pt) then

pf += RRT-plan(pt, t) ;
update-PRM-with-new-samples(pf) ;

end
path = search-minimum-path-in-graph(pr, pt) ;
path = pi + path + pf ;
return path ;

end

end
Algorithm 1: High-level view of the hybrid path planning algorithm that
integrates PRM and RRT.

8 Navigation among People with Cortex

3.3 Projector

Once a path is made available by the planner, the Projector component adapts
the trajectory to the external world by providing an external force that interacts
with the path and is computed using the robot’s range sensors. This process
corrects errors in the path that are originated by an imprecise model, a miss-
localization of the robot in the model or the appearing of unforeseen obstacles
like people. The Projector agent computes a force field in which obstacles repel
the path proportionally to the distance that separates them. This field relocates
the path at a safe distance from the obstacles increasing the robot’s clearance,
and provides the reactive component necessary for real time control. For each
point in the path pi, the direction of maximum variation of the bubble’s radius
with respect to (x, y) variation in the bubble’s position is computed with a
discrete Jacobian:

∂ρ

∂p
=

1

2δ

[
ρ(p− δx)− ρ(p+ δx)
ρ(p− δy)− ρ(p+ δy)

]
(2)

where ρ is the minimum distance function defined above, and p is the point in
the path and x and y are the point’s coordinates. δx, y are discrete displacements
in the point’s position. The Jacobian is multiplied by the difference between a
maximum distance threshold and the current circle radius, and by a scaling
factor to obtain the repulsion force.

fr =

{
kr(ρ0 − ρ(p))∂ρ∂p p < ρ0

0 p ≥ ρ0

}
, (3)

Each point in the path is modified according to the sum of the repulsion
force, fr, and the stretching force, fs.

pt+1
i = pti + fr + fs (4)

and, with time, the whole path evolves towards an equilibrium point following
a form of downhill search [16].

As an improvement in our implementation, at each iteration of the algorithm
the robot is virtually moved along the path to check for collisions using the
complete geometry of its base projected on the floor plane. In case that the
robot gets too close to some obstacle in this simulation, a situation that can
occur if the robot’s shape is not circular, the α gain multiplying the fr force is
increased by a small amount. If the situation persists, the robot eventually stops
and the path planner searches for an alternative trajectory to the target. Figure
3 shows this situation in a sequence where an obstacle not include in the model
steps into the path forcing the robot to stop and replan a new path to the goal.

3.4 Path follower

This component also activates when a new path is created and drives the robot
along it using a local controller that combines several measurements relating the

Navigation among people 9

(a) (b) (c) (d)

Fig. 2: Navigation sequence, (a) to (d), showing the interaction of the Projector
and Controller components. Note how the visible part of the path is submitted
to repulsion and stretching forces resulting in a smooth trajectory. The pink
shadow represents the laser field.

robot to the path. First the rotational velocity vr is computed as a quantity
proportional to the angle that the robot’s nose makes with the tangent to the
path at the closest point. We set a high gain so most of the turn required to align
with the road is made at the beginning and the laser field becomes effective,

vr = 0.7 ∗ θ (5)

with a limiting condition:

vr =

{
vmax vr > vmax

−vmax vr < −vmax
(6)

Assuming an omnidirectional robot we need to obtain speed values for the x
and y directions as an vt vector. Initially, we want to align this vector with the
tangent to the road at the closest point to the path, and pointing slightly inwards
if the robot is displaced laterally from the trajectory. Being lr the unitary line
tangent to the path at the closest point to the robot, we rotate it towards the
path by an amount proportional to the signed distance d from robot to the point,

l∗r = R(α ∗ sgn(d)) ∗ lr (7)

with,

R(α) =

[
cos(e−

1
|d|λ) sin(e−

1
|d|λ)

− sin(e−
1

|d|λ) cos(e−
1

|d|λ)

]
(8)

with λ serving as a scaling parameter.
This expressions give the direction of the translation speed vector vt. Now we

scale it according to the conditions of the path and the location of the target. To
do this, different inhibiting factors are computed and multiplied by the maximum
speed that the robot can achieve. The robot, we could say, is refrained from
jumping ahead by conditions related to the path-robot interaction. Defining the

10 Navigation among People with Cortex

(a) (b) (c)

(d) (e) (f)

Fig. 3: Navigation sequence showing an initial plan to the target (a) that is
interrupted by the appearance of an unexpected obstacle (b). The blocking is
detected as a threshold in the amount of free path ahead. The path planner
detects the situation and computes a new path (c) that is again projected and
followed by the robot (d,e) until the goal (e).

robot’s maximum speed as tmax, the first factor is a Gaussian function of the
local curvature c. For in straight segments with c = 0 the factor C takes the
value 1 and has no effect on the initial tmax speed,

C = e−
absc
λ (9)

The second factor is also a Gaussian function of the inverse of the distance
to the target dt. When the robot is far from it, a high value of dt produces a
result close to 1. Conversely, when the robot is approaching the target, the factor
quickly lowers to 0,

T = e−
1
dt
λ (10)

The third factor couples non-linearly the rotation speed vr with the transla-
tion speed vt,

R = e−
vr
λ (11)

The final translation vector l∗r is assigned a module that is the product of
the three factors times the maximum robot’s velocity.

l∗r = tmax ∗ C ∗ T ∗R (12)

Navigation among people 11

Finally, the forward and sideways translational speeds sent to the robot low
level motor controller are obtained as the l∗r components,

vtx = l∗r · [1, 0]t

vty = l∗r · [0, 1]t

One interesting thing in the Path Controller interaction with the path is that
it sees it as a continuous object, as opposed to a collection of ordered points, and
functions such as robot-perpendicular-distance-to-path or angle-between-robot-
and-path-tangent-at-closest-point are provided to avoid reasoning about each
waypoint conforming the path.

4 Social Navigation

Navigation among inanimate, non-human obstacles can be tackled quite effi-
ciently with the navigation sub-system described above. However, when humans
enter the robot’s scenario they bring with them social rules denoting how moving
things must behave around them. The combination of human social rules with
robot navigation among humans have brought to life the socially-aware robot
navigation new sub-field [25]. As this author claims, “The basic idea is simple:
if a mobile robot can understand and follow social conventions then the humans
will better understand robot intentions and will find the co-existence with robots
more comfortable.”

Our goal in this paper is to show how the current navigation agent can be
extended to a socially-aware navigation agent using the resources provided by
CORTEX, specifically, the architecture’s means to dynamically share informa-
tion among agents. The access to an extended description of the world is the
crucial step needed by the navigation agent to become social, specifically, the
information about the presence of people nearby, including their orientation and
an estimation of their attitude. These information is provided by a Person agent
that detects people using the data provided by the Microsoft Kinect II SDK. The
agent combines this data with a local perceptive state and injects the processed
information as a sub-tree in the DSR which, in turn, publishes all structural
changes in the graph and also all changes to the attributes of nodes, such as the
joint’s angles.

Once the information of people nearby is accessible to the navigation agent,
the modified algorithm uses Proxemics [36][35] to determine a comfort zone
around people and decide what path to follow and how much security distance
must be kept. The analysis of the situation of the people around the robot and
the computation of their comfort zones has been recently presented in [32][27],
where and algorithm has been derived to delimit the comfort areas around peo-
ple that should not be invaded by the robot. These areas are expressed as a list
of 2D polygons, as shown in Figure 4, where three configurations of people give
rise to different comfort zones. What interests us in this work is how this new

12 Navigation among People with Cortex

(a) One individual. (b) Two groups of 2 and 3 people.

Fig. 4: Comfort areas for one and several individuals. The final shape depends
on the position and orientation of the individuals. See [32]

interpretation of people wandering around the robot can be translated to the
Navigation agent with a small effort, thanks to its decoupled internal architec-
ture that is self-similar to that of CORTEX’s. The polygons computed by the
algorithm are injected in the navigation sub-system as a hallucination affecting
the real laser measurements. In the laser array humans are detected as two small
obstacles created by the legs. Now, the laser is modified in real-time to expand
those regions into the area covered by the polygons. Figure 5 shows two missions
of the robot Shelly in our lab. The first one using the original navigation agent
that finds a way through the two people talking, and the second one that decides
to detour by an alternative route that avoids the group.

5 Conclusions

We have presented ongoing work dealing with the problem of integrating a new
social navigation algorithm inside an existing cognitive architecture. The prob-
lem is specially interesting because when moving from standard navigation - i.e.
among inanimate objects- to socially-aware navigation, what is needed is access
to a new kind of information, the position of nearby people, that is being man-
aged by a different module, probably placed in a distant part of the system.
This kind of situations are among the ones we expect to be handled efficiently
by the CORTEX architecture. The option of a shared working memory of the
nature described in this paper might be controversial, specially in the light of
more distributed or dynamicists approaches to intelligence [28], but we believe
that it is a valuable tool to study autonomy in social robotics. The outcome of
this choices is to be evaluated empirically in forthcoming experiments performed
in real-world HRI scenarios. The introduction of social navigation in CORTEX
with minimum changes is one step in this direction that underpins the potential
of CORTEX to tackle more challenging scenarios.

A next experiment that deepens in this line of reasoning will situate the robot
behind a person that blocks its way to the target. In this situation, social rules
suggest that the robot stops and alerts the human of its presence, instead of

Navigation among people 13

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5: Experiment in our adapted apartment -Autonomy Lab- showing the robot
navigating without (a-d) social rules and with (e-h) them among a group of
chatting people.

just moving forward around her. Once the robot stops and talks to the person
several things can happen. For example, the person may turn around first and
step aside afterwards, or she can remain in the same position, without turning,
or still she can turn around and ask the robot for some new mission. Social
robots must be able to handle this variability but to do that other parts of the
architecture must intervene according to the unfolding of events. A conversa-
tional module, i.e. Dialogue in CORTEX- has to activate and warn the person
blocking the way and, possibly, engage in a longer conversation. Also, the Per-
son agent has to inject additional symbolic information about the person, so the
Planner agent can obtain a new plan in accordance with the situation, possibly
reasoning about the person’s immediate intentions. We expect that these new
missions can be addressed by CORTEX with minimum changes affecting only
the domain knowledge and some functionality of the existing agents.

Acknowledgments. This work has been partially supported by the MICINN
Project TIN2015-65686-C5-5-R, by the Extremaduran Goverment project GR15120,
by the Red de Excelencia ”Red de Agentes F́ısicos” TIN2015-71693-REDT, Eu-
ropean project 0043-EUROAGE-4-E (Interreg POCTEP Program), MEC project
PHBP14/00083 and by Extremadura Government grant EMOROBOTIC IB16090.

References

1. Kotseruba, I., Gonzalez, O.J.A., Tsotsos, J.K.: A Review of 40 Years of Cognitive
Architecture Research: Focus on Perception, Attention, Learning and Applications.

14 Navigation among People with Cortex

Technical report (2016)
2. Kurup, U., Lebiere, C.: What can cognitive architectures do for robotics? Biolog-

ically Inspired Cognitive Architectures 2 (2012) 88–99
3. Wei, C., Hindriks, K.V.: An agent-based cognitive robot architecture. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 7837 LNAI (2013) 54–71

4. Beetz, J., van Berlo, L., de Laat, R., van den Helm, P.: bimserver. org–An Open
Source IFC Model Server. Proceedings of the CIB W78 2010: 27th International
Conference–Cairo, Egypt (Weise 2006) (2010) 16–18

5. Haber, A., Sammut, C.: A Cognitive Architecture for Autonomous Robots. Ad-
vances in Cognitive Systems 2 (2013) 257–276

6. Bandera, A., Bandera, J., Bustos, P., Garćıa-Varea, I., Manso, L., Mart́ınez-Gómez,
J.: CORTEX: a new Cognitive Architecture for Social Robots. In: EUCognition
Meeting - Cognitive Robot Architectures, Viena (2016)

7. Metzler, T., Shea, K.: Taxonomy of Cognitive Functions. In: Proceedings of the
18th International Conference on Engineering Design. Volume 1. (2011) 330–341

8. van der Hoek, W., Wooldridge, M.: Chapter 24 Multi-Agent Systems. In F. van
Harmelen, Lifschitz, V., Porter, B., eds.: Handbook of Knowledge Representation.
Elsevier B.V. (2008) 887–928

9. Romero-Garcés, A., Vicente Calderita, L., Mart́ınez-Gómez, J., Bandera, J.P.,
Marfil, R., Manso, L.J., Bustos, P., Bandera, A.: The cognitive architecture of
a robotic salesman. In: XVI Conferencia de la Asociación Española para la In-
teligencia Artificial,, Albacete (2015)

10. Bandera, A., Bandera, J.P., Bustos, P., Calderita, L.V., Fern, F., Fuentetaja, R.,
Garc, F.J., Iglesias, A., Luis, J., Marfil, R., Pulido, C., Reuther, C.: CLARC : a
Robotic Architecture for Comprehensive Geriatric Assessment. In: Workshop on
Physical Agents. Volume 1., Málaga (2016) 1–8

11. Manso, L., Bustos, P., Bandera, J., Romero-Garcés, A., Calderita, L., Marfil, R.,
Bandera, A.: Deep representations for collaborative robotics. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 10087 LNCS (2016) 1–6

12. Manso, L., Bachiller, P., Bustos, P., Calderita, L.: RoboComp: a Tool-based
Robotics Framework. Lecture Notes in Computer Science. Simulation, Modeling
and Programming in Autonomous Robots 6472 (2010) 251–262

13. Bustos, P., Manso, L.J., Bandera, J.P., Romero-Garcés, A., Calderita, L.V., Marfil,
R., Bandera, A.: A unified internal representation of the outer world for social
robotics. In: Advances in Intelligent Systems and Computing. Volume 418. (2016)
733–744

14. Fernández, F., Mart́ınez, M., Garćıa-Varea, I., Mart́ınez-Gómez, J., Pérez-Lorenzo,
J.M., Viciana, R., Bustos, P., Manso, L.J., Calderita, L., Gutiérrez, M., Núñez, P.,
Bandera, A., Romero-Garćıa, A., Bandera, J.P., Marfil, R.: Gualzru’s path to the
advertisement world. In: IROS-FineR Workshop and CEUR Proceedings. Volume
1484. (2015) 55–65

15. Romero-Garcés, A., Calderita, L.V., Mart́ınez-Gómez, J., Bandera, J.P., Marfil,
R., Manso, L.J., Bandera, A., Bustos, P.: Testing a fully autonomous robotic
salesman in real scenarios. In: IEEE International Conference on Autonomous
Robots Systems and Competitions, Vilareal, Portugal (2015) 1–7

16. Quinlan, S., Khatib, O.: Elastic bands: connecting path planning and control.
[1993] Proceedings IEEE International Conference on Robotics and Automation
(1993)

Navigation among people 15

17. Brock, O., Khatib, O.: Elastic Strips: A Framework for Motion Generation in
Human Environments. The International Journal of Robotics Research 21(12)
(2002) 1031–1052

18. Yang, Y., Brock, O.: Elastic roadmaps - motion generation for autonomous mobile
manipulation. Autonomous Robots 28(1) (9 2009) 113–130

19. Hirsch, K., Brandt, T.: An elastic beam approach to predictive vehicle motion
planning. Pamm 7(1) (12 2007) 4130025–4130026

20. Keller, M., Hoffmann, F., Bertram, T.: Planning of Optimal Collision Avoidance
Trajectories with Timed Elastic Bands. 19th World Congress of . . . (2014) 9822–
9827

21. Haut, M., Manso, L., Gallego, D., Paoletti, M., Bustos, P., Bandera, A., Romero-
Garcés, A.: A navigation agent for mobile manipulators. In: Advances in Intelligent
Systems and Computing. ROBOT2015 Conference. Volume 418. (2016) 745–756

22. Kavraki, L.E., Svestka, P., Latombe, J., Overmars, M.: Probabilistic Roadmaps
for Path Planning in High-Dimensional Configuration Spaces. IEEE Transactions
on Robotics and Automation 12(4) (1996) 566–580

23. LaValle, S.: Rapidly-Exploring Random Trees: A New Tool for Path Planning.
Technical report, TR-98-11. Computer Science Dept. Iowa State University (1088)

24. Kuffner, J., LaValle, S.: RRT-connect: An efficient approach to single-query
path planning. Proceedings 2000 ICRA. Millennium Conference. IEEE Inter-
national Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065) 2(Icra) (2000) 995–1001

25. Rios-Martinez, J.A.: Socially-Aware Robot Navigation: combining Risk Assess-
ment and Social Conventions. PhD thesis, UNIVERSITY of GRENOBLE (2013)

26. Nuñez, P., Manso, L.J., Bustos, P., Drews-Jr, P., Macharet, D.G.: A Proposal for
the Design of a Semantic Social Path Planner using CORTEX ˜. In: Workshop of
Physical Agents 2016. Volume 1., Málaga, Spain (2016)

27. Macharet, D.G., Vega-magro, A., Manso, L., Bustos, P.: Socially Acceptable Robot
Navigation over Groups of People ˜. In: RO-MAN 27th IEEE International Sym-
posium on Human and Robot Interactive Communication. (2107)

28. Beer, R.: Dynamical approaches to cognitive science. Trends in cognitive sciences
4(3) (3 2000) 91–99

29. Kirby, R.: Social robot navigation. Ph.D. dissertation, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, May (2010).

30. Ratsamee, P., MaeKazuto, Y., Horade, M., Kojima, M,. Arai, T.: Social interactive
robot navigation based on human intention analysis from face orientation and
human path prediction. Robomech Journal, Vol: 2, (2015).

31. Scandolo, L. and Fraichard, T.: An Anthropomorphic Navigation Scheme for Dy-
namic Scenarios. In proceedings on IEEE International Conference on Robotics
and Automation, pp. 809-814, (2011).

32. Núñez, P. and Manso, L. and Bustos, P. and Drews-Jr, P. and Macharet, D.G.
A Proposal for the Design of a Semantic Social Path Planner using CORTEX.
Workshops on Physical Agent, pp. 31-37, (2016)

33. Kruse, T., Kumar, A., Alami, R. and Kirsch, A.: Human-aware robot navigation:
A survey. Robotics and Autonomous Systems, vol. 61, pp. 1726-1743, (2013).

34. J. Mumm and B. Mutlu. Human-robot proxemics: physical and psychological dis-
tancing in human-robot interaction. In Proceedings of the 6th international confer-
ence on Human-robot interaction (HRI). New York, NY, USA: ACM, pp. 331–338,
(2011).

16 Navigation among People with Cortex

35. M. Walters, M. Oskoei, D. Syrdal, and K. Dautenhahn. A long-term Human-Robot
Proxemic study. In IEEE International Symposium on Robot and Human Interac-
tive Communication (RO-MAN), pp. 137 –142, (2011).

36. R. Mead and M. J. Mataric. A probabilistic framework for autonomous proxemic
control in situated and mobile human-robot interaction. In Proceedings of the
seventh annual ACM/IEEE international conference on Human-Robot Interaction,
ser. HRI ’12. New York, NY, USA: ACM, pp. 193–194, (2012).

